วันพฤหัสบดีที่ 5 กันยายน พ.ศ. 2556

ความมหัศจรรย์ สามเหลี่ยมปาสคาล


ความมหัศจรรย์ของสามเหลี่ยมปาสคาล



ผู้ค้นพบสามเหลี่ยมปาสคาล
ชุดของจำนวนทีในปัจจุบันเราเรียกว่า สามเหลี่ยมปาสกาลได้รับการความสนใจในการศึกษาจากคณิตศาสตร์ทั้งในอินเดีย กรีก จีน ก่อนหน้านั้นนานแล้ว แต่ทว่า แบลส ปาสกาล (ค.ศ. 16231662) เป็นบุคคลแรกที่ค้นพบและแสดงให้เห็นความสำคัญ และแบบรูปทั้งหมดที่บรรจุอยู่ในสามเหลี่ยมปาสกาล นี่เองเป็นสาเหตุที่ทำให้เราเรียกมันว่า สามเหลี่ยมปาสกาลเพื่อให้เกียรติแก่ปาสกาลซึ่งเป็นค้นพบแบบรูปของมัน
แต่เราก็ยังพบว่าในบางตำรา เรียกมันว่า สามเหลี่ยมของชาวจีน” (Chinese’s Triangle) ด้วย เพื่อให้เกียรติแก่ชาวจีนโบราณที่ได้ค้นพบ และพัฒนาขึ้นในระยะแรก ชนชาติใดบ้างที่สนใจศึกษาเรื่องนี้
ชนชาติที่ให้การศึกษาเรื่องนี้ก่อนที่ปาสกาลจะค้นพบความสวยงามทั้งหมดของสามเหลี่ยมนี้ในงานของเขาที่ชื่อ Traité du triangle arithmétique (1653) เริ่มเดิมทีเป็นแนวคิดเรื่อง จำนวนเชิงวิธีจัดหมู่ (Combination Numbers) และจำนวนทวินาม (Binomial Numbers) และการศึกษาเรื่อง จำนวนเชิงรูปภาพ” (Figurate numbers) ของนักคณิตศาสตร์ชาวกรีกด้วย

สามเหลี่ยมปาสคาล คือ อะไร?
   สามเหลี่ยมปาสคาล มีต้นกำเนิดมาจากความช่างสังเกตของนักคณิตศาสตร์ ที่พบว่า เมื่อเรานำสัมประสิทธิ์ที่ได้จากการกระจายทวินาม (a b)n มาเขียนเรียงกันเป็นรูปสามเหลี่ยมแล้ว ตัวเลขที่อยู่ข้างล่างของรูปสามเหลี่ยมจะมีค่าเท่ากับตัวเลขที่อยู่ข้างบน 2 ตัวที่อยู่เยื้องๆ กับตัวมันบวกกัน
พิจารณา (a b)n เมื่อ n เป็นจำนวนเต็มบวกต่างๆกัน
เมื่อ n = 0 => (a b)0 = 1
เมื่อ n = 1 => (a b)1 = a b ส.ป.ส.เป็น 1 และ 1 ตามลำดับ
เมื่อ n = 2 => (a b)2 = a2  2ab b2 ส.ป.ส.เป็น 1, 2, 1 ตามลำดับ
เมื่อ n = 3 => (a b)3 = a3  3a2b 3ab2  b3 ส.ป.ส.เป็น 1, 3 , 3, 1 ตามลำดับ
เมื่อ n = 4 => (a b)4 = a4  4a3b 6a2b2  4ab3  b4 ส.ป.ส.เป็น 1, 4, 6 , 4, 1 ตามลำดับ
.
.
.
เอาเฉพาะสัมประสิทธิ์ดังกล่าวมาเขียนได้ดังนี้ n=0;                   
n=1;                1    1
n=2;              1    2    1
n=3;           1    3    3    1
n=4;        1    4    6    4    1

จะเห็นว่าในบรรทัด n=2 ตัวเลข 2 เกิดจาก 1 1 ในบรรทัดn=1
และในทำนองเดียวกัน ในบรรทัด n=3 ตัวเลข 3 เกิดจาก 1 2 หรือ 2 1 ในบรรทัด n=2
ส่วนภาพด้านบนเป็นสามเหลี่ยมปาสคาล ของจำนวนเต็มบวก 10 ตัวแรก
ภายใต้รูปสามเหลี่ยมปาสคาลมีความมหัศจรรย์มากมาย ว่างๆ ก็ลองค้นหาดูนะ  



วีดีโอที่เกี่ยวข้อง สามเหลี่ยมปาสคาล


วันที่ 5 กันยายน 2556

14 ความคิดเห็น:

  1. โอ้ว...amazing

    ความรู้เพียบ!! กิกิ

    ตอบลบ
  2. เป็นสื่อที่น่าสนใจ สามารถนำไปใช้ในการเรียนได้ค่ะ

    ตอบลบ
  3. เนื้อหาละเอียดมากค่ะ เข้าใจความหมายของสามเหลี่ยมปาสคาลเลยค่ะ

    ตอบลบ
  4. สามารถนำไปใช้ในการเรียนได้ ดีมากๆเลย

    ตอบลบ
  5. เปนสื่อที่น่าสนใจมาก สามารถนำไปใช้สอนได้เรยคะ

    ตอบลบ
  6. ...วีดีโอทำให้รู้เรื่องขึ้นเยอะเลยยย...^___________^

    ตอบลบ
  7. สื่อน่าสนใจมากเลยค่ะ เนื้อหาละเอียดดีมาก ทำให้เข้าใจมากขึ้นๆๆๆ

    ตอบลบ
  8. ได้ความรู้ที่น่าสนใจมากเลย

    ตอบลบ
  9. เนื้อหาดีมากค่ะ สื่อก็น่าสนใจดี

    ตอบลบ
  10. เนื้อหาน่าสนใจมากค่ะ สามารถทำให้คนที่เข้ามาศึกษาเข้าใจได้โดยง่ายโดยเฉพาะการมีตัวอย่างและภาพประกอบ

    ตอบลบ
  11. เนื้อหาสาระดีมากๆ เข้าใจง่าย

    ตอบลบ
  12. เนื้อหาดีมากเลยค่ะ ทำให้ได้ความรู้มากขึ้นเยอะ

    ตอบลบ
  13. มีเนื้อหา และได้สาระความรู้ที่ละเอียดมากขึ้น

    ตอบลบ
  14. เนื้อหาสาระดีมากมีความรู้มากเเละไปไช้สอนได้

    ตอบลบ